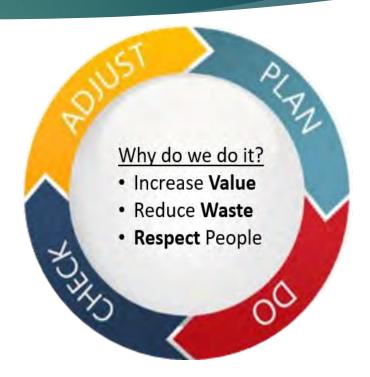
Continuous Process Improvement

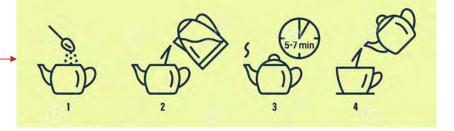
HANDS ON.

Introduction


- 25 years in process improvement & Six Sigma
- PACCAR, Gordon Trucking, Seattle Schools, Port of Seattle
- Love to be outside


What is *Continuous Process Improvement

(*CPI here on out)


- PDCA framework heart of continuous process improvement
- The PDCA Cycle helps you in your efforts in continuous improvement

What is Process?

- ► A process is a set of activities that interact with one another.
- ▶ Often, the output of one process is the input for another process.

We are the Acme Plane Company

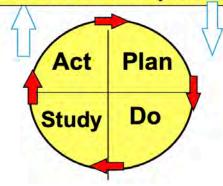
 What changes are to be made in next cycle?

> Abandon Adapt Adopt

Study

- Complete the analysis of the data
 - Compare data to predictions
 - Summarize what was learned

Plan


- Objective
- Questions and predictions (why)
- Plan to carry out the cycle (who, what, where, when)

Do

- Carry out the plan
- Document problems and unexpected observations
- Begin analysis of the data

Model for Improvement

- 1. What are we trying to accomplish?
- 2. How will we know that a change is an improvement?
- 3. What changes can we make that will result in an improvement?

PDSA

Our Plan

AIM

 Improve the performance of a paper airplane to maximize the distance it flies and the accuracy of the flight

Measures

- Distance in feet
- Accuracy of the landing (total landing points)

Add a footer 10/17/22

Room Setup

4 Stations

PLAN Table for planning your changes

DO Table with supplies to make your

changes & runway to fly plane

STUDY Charts for plotting your measures

 ACT Table to determine if you abandon, adapt, or adopt your changes

Simple Rules

- Only one design change per PDSA cycle
- All planes must have wings and be able to glide
- Each design must be flown by three different test

2

866

pilots

 A flight is in the runway band if it touches the tape

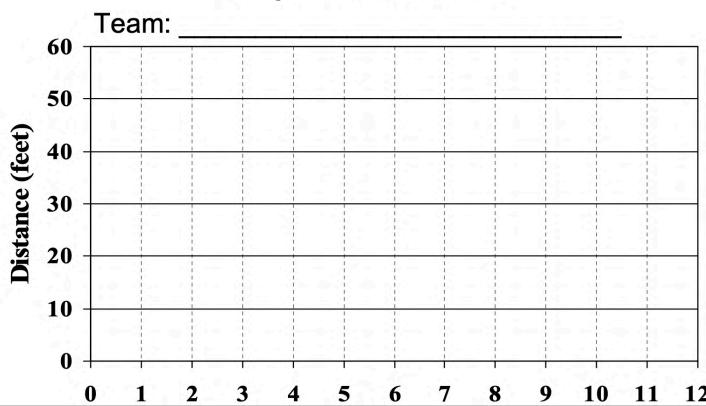
Add a footer 10/17/22

Getting Started

- Form into teams
- Designate:
 - Team leader
 - Data person to track and record the PDSA cycles
 - 3 test pilots
 - Additional people can help and take turns as pilots
- Each team should have:
 - Change package
 - 2 PDSA worksheets
 - Paper for your first, baseline plane
 - Graphs for measuring distance & accuracy

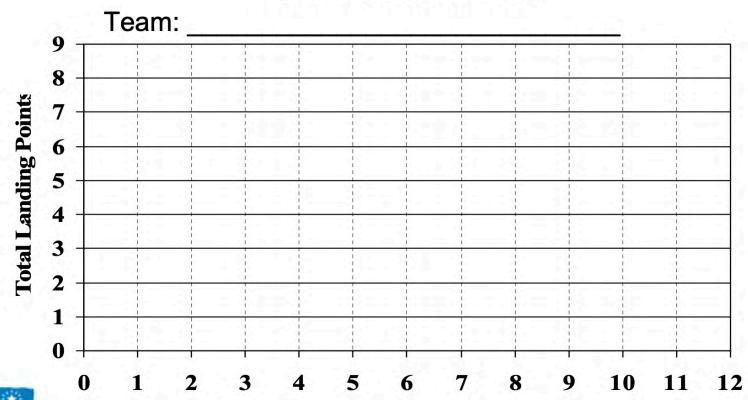
Airplane Change Package & Measures

Problem	Changes	Measures	
Short Flight Distances	Use heavier paperChange launch	•Flight distance on straight line	
Nose Dives	•Add tape weight to rear to prevent	•Percent nose dives	
Wanders Off-Target	•Reinforce plane body with staple	•Distance from straight path	


Add a footer 10/17/22

PDSA Worksheet

PLAN		DO		STUDY	ACT
Theory you want to	Results:			What happened?	What will you keep
test:	#	Distance (feet)	On Runway	What worked? What didn't?	doing? What will you stop doing?
	1			What did you	What will you
	2			Learn?	change, do more of or do less of?
What and How:	3	1= 1		- 1	or do less or?
	Total		- = -		
	Average				
Predicted Results:					


Distance Data

Paper Plane Distance

Accuracy Data

Paper Plane Accuracy

What to DO at Each Station

→1. Plan

- 1. Record what theory or hunch you are going to test
- 2. Record what you are going to do and how
- Predict your results (not just accuracy and distance, also consider other characteristics)

2. Do

- 1. Create the plane
- 2. Fly it 3 times, with 3 different pilots
- 3. Record the distance of each flight
- 4. Record the runway band that each flight landed in

3. Study

- 1. Compute the average distance and plot it on the graph
- Compute the total runway landing band points and plot it on the accuracy graph
- 3. Discuss the results and what you have learned

→4. Act

- 1. Decide what to do for the next PDSA cycle
- 2. What will you abandon, what will you adapt, what will you adopt

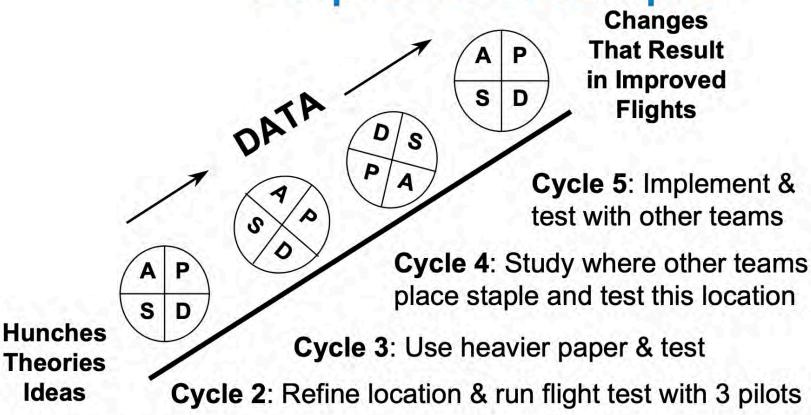
Add a footer 10/17/22

CAUTION!!!

 Violations will be assessed for:

Teams "Planning" at the "Do" station,
"Studying" at the "Act" station, etc.!

– Teams practicing flights off the runway!


 Teams making more than one change in each PDSA cycle!

AND - Any other violations the Air Traffic Controllers feel like assessing



Airplane Example

Cycle 1: Decide where to locate staple & run flight test with 3 pilots

Add a footer 10/17/22 20

What Did You Learn?

10/17/22 21

Questions?

Pennie Saum

www.penniesaum.com

pennie@penniesaum.com

253-691-8461

LinkedIn: Pennie Saum

